Die interne Zinsfuß-Methode ist ein Verfahren der dynamischen Investitionsrechnung, welches die Rendite oder die Effektivverzinsung, die eine Investition einbringt, mit dem sogenannten Kalkulationszinssatz vergleicht.
Der Kalkulationszinssatz der internen Zinsfuß-Methode stellt die Mindestverzinsung dar, die ein Investor erreichen möchte. Ist der interne Zinssatz mindestens so groß wie die Mindestverzinsungsanforderung, so wird die Investition bei Anwendung der internen Zinsfuß-Methode als vorteilhaft angesehen.
Vorteilhaftigkeit der Investition nach der internen Zinsfuß-Methode
Zwar handelt es sich bei der internen Zinsfuß-Methode um einen reinen Zinsvergleich, der im Prinzip immer angestellt werden kann. Dennoch lässt sich die Frage nach der Vorteilhaftigkeit einer Investition nur dann eindeutig beantworten, wenn sowohl der interne Zinssatz als auch die Mindestverzinsungsanforderung des Investors feststehen.
Bei der internen Zinsfuß-Methode geht es insbesondere um die Feststellung, ob die Anforderungen des Investors an die Mindestverzinsung der Investition erfüllt werden und wie hoch die Rendite der Investition ist. Dabei ergibt sich der Mindestzinssatz aus der Addition von Basiszinssatz und Risikozuschlag.
Grafische Verfahren der internen Zinsfuß-Methode
Bei der internen Zinsfuß-Methode entspricht der interne Zinssatz dem Zinssatz, bei dem der Kapitalwert einer Investition null wird.
Zur grafischen Darstellung der internen Zinsfuß-Methode betrachtet man die Kapitalwertkurve des Investitionsobjekts, die man in ein Diagramm einzeichnet. Ein entsprechendes Beispiel finden Sie hier. In diesem Beispiel schneidet die Kapitalwertkurve die Abszisse bei einem Zinssatz von 8 Prozent, sodass man bei einem Kalkulationszinssatz von ebenfalls 8 Prozent einen Kapitalwert von null erhält.
Arithmetisches Verfahren der internen Zinsfuß-Methode
Der interne Zinssatz der internen Zinsfuß-Methode lässt sich nicht nur auf grafischem Wege, sondern auch rechnerisch ermitteln. Durch lineare Interpolation lassen sich Werte berechnen, die sich zwischen bekannten Funktionswerten befinden.
Um diese Möglichkeit der internen Zinsfuß-Methode zu nutzen, bedient man sich dem sogenannten Sehnenverfahren, welches man auch als Regula falsi bezeichnet. Ein Beispiel hierfür finden sie in dieser Abbildung. Für die beiden dort angegebenen Zinssätze wurden die beiden Kapitalwerte C0,1 und C0,2 errechnet. Die beiden Kapitalwertkurve zwischen i1 und i2 werden hier durch die Sehne P1P2 ersetzt, die die i-Achse an der Stelle i = r schneidet. Der gesuchten Lösung r kommt man umso näher, je näher die Zinssätze, mit denen man den Versuch startet, an r liegen.
Bei der rein grafischen Lösung des der internen Zinsfuß-Methode ist es daher zu empfehlen, mit drei Versuchszinssätzen zu arbeiten, um zusätzlich die Krümmung der Kurve berücksichtigen zu können und hierdurch eine etwas genauere Lösung zu finden.